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Abstract. A model of discrete space-time is presented which is, in a sense, both Lorentz 
invariant and has no restriction on the relative velocity between particles (except tr < c). 
The space-time has an inbuilt indeterminacy. 

1. Introduction 

Throughout the development of man’s ideas about the physical world, the view that 
time and space are continuous has generally prevailed. Discrete models have oc- 
casionally been entertained, with space-time events labelled by integral coordinates 
(Schild 1948), but these have had virtually no impact on physics. The continuous 
picture certainly provides an accurate description of affairs on the macroscopic scale, 
but there are strong advocates (notably R Penrose 1967 A d a m  Prize Essay: An 
analysis of the structure of space-time, unpublished and Chew 1963) of the view that 
this picture must become inaccurate at the sub-microscopic level, probably when we 
are dealing with intervals shorter than those encountered in elementary particle 
physics. 

As a simple model of discrete space-time, Schild (1963) has considered a hyper- 
cubic lattice, comprising all events in Minkowski space-time whose four coordinates 
(t, x ,  y, z )  are integers. The problem is that this is not a Lorentz invariant picture, as a 
general Lorentz transformation destroys the hypercubicity. Schild preserves Lorentz 
invariance by allowing only those transformations which preserve the integer label- 
ling. Unfortunately the smallest non-zero velocity ailowed by the resulting group is 
3”*c/2 where c is the velocity of light, which is not very promising as far as physical 
applications are concerned. The purpose of this paper is to describe a discrete model 
which, in a sense to be defined, is both Lorentz invariant and allows any relative 
velocity between 0 and c. 

2. The k-calculus 

Bondi (1965) has presented a formulation of special relativity based upon what he 
calls the k-calculus, which provides a very convenient framework for my ideas. He 
considers observers equipped only with clocks and light sources; these observers 
assume a fixed value for the velocity of light, and measure distances using a radar 
technique, by observing the interval between emission of light pulses and reception of 
the corresponding echoes. Naturally the space-time so constructed is Minkowski 
space-time; the point of the exercise is that many of the elementary results of special 
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relativity follow in an almost trivial manner, without having to derive the Lorentz 
transformation first. For example, figure 1 shows two such observers A and B moving 
with relative velocity U. To measure this velocity, A sends out two flashes of light 
separated by an interval s on his clock. On B’s clock, the corresponding interval 
between reception of the two flashes is ks, which is Bondi’s definition of the k-factor; 
by symmetry A must observe an interval of k2s between reception of the echoes. If A 
emits the first pulse when his clock shows time Se, and receives the first echo at time 
S,, then he assigns coordinates (T,  X) to event P given by (using units in which c = 1) 

T = f ( S ,  + Se)  

x = f ( S ,  - Se) .  

Time 

- Space 

Figure 1. The k-calculus. 

L-- 

Denoting changes by AT, AX, etc, we have 

AT = ;(AS,+ AS,)= $(kz  + 1)s 

A X = f ( A S , - A S e ) = $ ( k 2 -  1)s 

giving the velocity 

u = AX/ AT = (k ’ - 1 )/(k ’ + 1) 

or 

Hence in this simple fashion the relativistic Doppler shift formula has been derived. 

3. Discrete time 

The space-time to be described here is constructed in exactly the above fashion, but 
assumes that proper-time intervals are discrete rather than continuous. Thus for 
example the interval between A’s emission of the two flashes in the above experiment 
must be measured by a positive integer ne,  rather than by a continuous real number s. 
Similarly the interval between A’s reception of the two echoes is measured by another 
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positive integer n,. We now define the k-factor characterising B's motion by 

(2) 

(3 1 

2 k =n,/ne 

and B's velocity relative to A by 

U = ( n ,  - ne) / (nr  + ne). 

At this stage, the model runs into severe difficulties as a model of the real world, as 
equations (2) and (3) restrict k 2  and U to rational values. Moreover, the result of a 
determination of B's velocity will depend upon which pulse emission interval A 
decides to use. For example, A might use a large value, say ne= lo6, in one deter- 
mination, and observe say n, = lo6+ 2, giving v = lop6, i.e. 300 m s-'. In a second 
determination A might choose a small interval, say the extreme case ne= 1; the 
smallest non-zero velocity in this case is given by n,  = 2, and is v = f ,  i.e. 10' m s-'. 

These problems are similar to those encountered in Schild's model; they disappear 
if we drop the assumption that n,  is precisely determined by ne. For example, 
observer A might conduct a series of experiments to determine the velocity of a given 
particle B. In each experiment, A allows the same integer interval ne between sending 
out the two light flashes. In the model advocated here, the values of n,  observed in 
such a series need not be identical; this is taken as one of the axioms of the model. 
Instead all values of n,  can be observed, but do so with a frequency distribution which 
gives the correct mean value for the ratio in equation (2). In the above particular 
example with ne = 1, the value n,  = 1 would be observed in almost all experiments, and 
n,  = 2 in only about three experiments per million conducted. 

Thus we have a model of space-time with an inbuilt indeterminacy. All that is 
needed to complete the picture is a specification of the frequency distribution of the 
observed number n,. The natural choice is the Poisson distribution, which finds a 
number of applications in physics. For example, in a gas the number of atomic 
collisions experienced by any one atom in unit time is a random integer distributed in 
this fashion; if Pnc is the probability of making n, such collisions, we have 

Pnc = n> e-"m/n,! 

where n ,  is the mean number of collisions per unit time. I shall assume such a 
distribution for n,. In the series of experiments described above, we require 

Pne,nr = ( k 2 n e ) ,  e-kzne /nr!. (4 ) 
This is the probability that if A chooses a pulse emission interval ne, he will observe an 
echo reception interval nr. The factor k 2  characterising B's motion relative to A is 
now the mean value of the ratio n,/ne,  rather than the value resulting from a particular 
observation; k 2  is thus not restricted to rational values. Similarly, the mean of the 
velocity defined by equation (3) can have any value between -1 and +l .  The 
standard deviation of nr is exactly knell2, so that n, /ne+k2 as n,+m;  hence we 
recover the classical picture over sufficiently long intervals, when the indeterminacy is 
of negligible proportions. 

4. The nature of time 

It may be that the above analogy with the kinetic theory of gases is more than just an 
analogy. I have a picture of space-time as in some sense comprising a sea of particles 
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which I shall call chronons. Other particles float in this sea and sense a continual 
chronon bombardment; this sensation is called time. I have found this physical picture 
a great conceptual aid, but it is not essential to the model, the essence of which is 
contained in the following purely mathematical postulates: 

(i) Discreteness. Proper-time intervals are discrete and the structure of space- 
time is given by the radar map. 

(ii) A correspondence principle. The integers, measuring any two time intervals 
which classically are causally related in a linear manner, are randomly related 
in such a way that specifying the one only fixes the mean of the other, this 
mean to coincide with the classical value. 

(iii) The distribution. The probability function specifying the random behaviour is 
the Poisson distribution. 

In what follows, I shall frequently use the expression ‘counting chronons’; it can be 
interpreted as meaning just the registering of discrete time elements; however, it may 
have a more literal meaning. 

5. Lorentz invariance 

The postulates of this space-time model do not assign a special position to any 
particular class, of observers, so that the model must basically be Lorentz invariant. 
However, the indeterminacy will mask the invariance in any one observation. It is 
instructive to examine the k-calculus derivation (Bondi 1965) of the Lorentz trans- 
formation in the light of the ideas expounded above. Observers A and B in figure 2 

B A 

f 
/ 
I 

Figure 2. The Lorentz transformation. 

move with relative motion characterised by a factor k, and agree to start their chronon 
counters as they pass each other at event 0. After counting Ne chronons A emits a 
light pulse to illuminate event P, and receives the echo after counting N, chronons. 
Observer B similarly illuminates event P, the corresponding chronon counts being N,‘ 
and N,.‘. A and B respectively assign (half-integral) coordinates (T, X) and (T’,  X ’ )  to 
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this event, defined by 

T = ;(Ne + N,)  
T’ = $(N: + N:) 

X = $(Ne - N,)  
X ’  = i(Nd - N:),  

Writing 

N;/Ne  = kl Nr /N:  = k2 

the equations 

T‘ =; (k l+  l / k z ) T  - $ ( k l -  l / k z )X  

X ’  =$(k l+  l / k Z ) X - f ( k i -  l / k z )T  

and 

T ’ 2 - X ’ 2  = (k1/k2) (T2-X2)  

are easily derived. Classically we would have 

when equations ( 5 )  and (6) are just the Lorentz transformation. In general we have 
k l #  k2, so that these equations do not coincide with a Lorentz transformation. 
However, the correspondence principle ensures that the mean values of k l  and k2, 

taken over many similar observations, are equal to k, so that in this sense Lorentz 
invariance is maintained. Of course in the case of the macroscopic intervals k l  and k2 

are so nearly equal that the lack of invariance would not be noticed. 

6 .  Uncertainty 

Modern classical and quantum physics are troubled by infinities in a number of areas; 
the possibility that these divergences might disappear if a different space-time model 
were to be adopted, with the equations of classical and quantum physics suitably 
rewritten, has been one of the motivations behind the search for such alternatives. 
Given such a model, the appropriate reformulation of the laws might not be unam- 
biguously indicated. In this context, the present model offers almost an embarrass- 
ment of riches, as any reformulation of classical physics necessarily leads to laws which 
reflect the indeterminacy in the model. A reformulation of quantum theory, with its 
inherent uncertainty, within the present framework, might lead to too much in- 
determinacy. A tempting point of view is that this model plus classical physics might 
be an alternative to classical space-time plus quantum theory. An intermediate 
viewpoint is that this model might make the ‘second quantisation’ programme un- 
necessary. 

The present model is hardly sufficiently well developed to permit a general refor- 
mulation of the kind discussed above. However, we can examine the most elementary 
classical dynamical concept, namely the one-dimensional motion of a free particle. 
Consider first a non-relativistic case: an observer A and an elementary particle B of 
mass m at rest relative to A, in the sense that k = 1 in the distribution (4). A carries 
out a radar determination of B’s velocity using a flash emission interval ne; in general 
A will observe an echo reception interval n,  # ne, so that according to equation (3) B 
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does not appear to be at rest at all; over a series of such experiments, B has a mean 
square velocity { u 2 )  given by 

( u 2 )  = ( (!G)2) - ( (n ,  - ne)2) 
n,+ n e  4n,Z * 

Distribution (4) with k = 1 gives ( ( n ,  - 
( v ' )  - 1 / 4 n ,  

= ne, giving 

which constitutes an estimate of B's energy. As the true energy of B is zero, this 
estimate is in error by an amount 

A E  = t m ( v 2 )  - m/8ne .  

The estimate refers to B's motion during a certain time interval, of extent At  given by 
equation (1): 

At =+(n; tn , ) -n , .  

The product A E A t  is thus given by 

A E A t  - m / 8 .  (7 ) 

If ns is the number of chronon counts corresponding to one second, then At must be 
divided by n, to convert it into seconds. In conventional units, equation (7) thus 
becomes 

h E A t  - mc2/8n, .  (8) 

Apart from an ambiguity relating to the mass m, this is precisely Heisenberg's 
uncertainty relation, if we identify Plank's constant h as 

h = mc2/8n ,  
or 

n, = c/8A,  (9) 
where A, is the Compton wavelength of the particle B. Taking a typical elementary 
particle wavelength A , -  cm, equation (9) gives a discrete time element of about 
3 x s. The corresponding length element is just c ln ,  = 8A,, so that the space- 
time model under discussion certainly fits in with the notion of continuity breakdown 
at the elementary particle level. 

To generalise equation ( 7 )  to the case of a particle actually moving, in the sense 
that k # 1, we note that the total energy E is given by 

E = tm[ (nr /n , ) ' / 2+  (n , /nr ) ' /2 ] .  
We write 

2 n , = k  n ,+n  
where n is the deviation of n, from its mean value k2n,, and is of order kn,"2. 
Expanding E in  powers of n, we find 

E = Eo+~ppo(n/k2n,)+k(m/k -po)(n/k2n,)'-&(2m/k - p ~ ) ( n / k ' n , ) ~ + .  . . (10) 
where 

E o - Z ( k + l / k ) m  -1 and p o = a ( k - l / k ) m  
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are the classical energy and momentum of the particle, i.e. as revealed over long 
observation intervals. We can write equation (10) as 

k 2 +  1 
2k  AEAt = 7 [ ikpo(n/kn2/2)n2/2  + $ ( m l k  -po) (n/kn2’2)2 /8  

- $ ( 2 m / k  -po) (n/kn, ‘ /2)3 /kn, ’ ’2+.  . . I .  
Here the energy uncertainty AE = E -EO and the observation interval At = 
$(n, + ne) - $(k2  + l ) n e .  This equation shows how the various powers of n contribute to 
the uncertainty; the n 2  term corresponds to that discussed in the preceding paragraph. 
Noting that n,!kn:I2 is of order unity, we see that the product AEAt + 03 as n,  + 03 or 
ne+O, i.e. over very long or very short observation intervals. This product is never 
smaller than the value m / 8  discussed above, and has this value when the energy 
pncertainty is at least of the order of the classical kinetic energy. 

A simple expression showing the deviation of B’s motion from its classical path can 
be derived. We consider the expression (4) for Pne,nr and use Stirling’s approximation: 

n,! - (27)”’ n ,  nr+’ Z e r  -nr . 

For moderately large values of ne, equation (4) becomes 

P,,,,,,, - ( 2 ~ n , ) - ’ / ~  exp[ - i (nr  - k2ne)2 /k2ne] .  ( 1 1 )  

We interpret this as follows: ne is the interval between two light flashes emitted by A, 
to make two determinations of B’s position. For simplicity I shall assume that the first 
is emitted as A and B pass (and hence returns immediately), and that A chooses this 
event as his space-time origin. If the second position so determined has coordinates 
(t ,  x), we have 

n e = t - X  

n r =  t + x  

and 

n , -  k2ne = ( k 2  + l ) (x - trot) 

where z10 = ( k 2 -  l ) / ( k 2 +  1 )  is the classical velocity of B. Equation ( 1 1 )  thus becomes 

Pl,x = [ 2 ~ ( t + x ) ] - ~ / ~  exp[ - i ( k 2 +  1)2(x - v o t ) ’ / k 2 ( t - x ) ] .  

This is the probability that after time t the particle B is observed at position x ;  we see 
that this position has a Gaussian spread about the classical path x = trot. 

7. Recapitulation 

Classical physics deals with systems having a continuous spectrum of states, and allows 
a system to be precisely located within this spectrum. In general quantum physics 
permits only a discrete spectrum, but allows the state of a system to spread over this 
spectrum according to a probability function. In this way classical and quantum 
physics can ‘correspond’ in the appropriate limit. A similar contrast can be drawn 
between the classical picture of time and the one presented here; in this sense the 
theory discussed here is a quantum theory of time. 
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The results presented in 0 6 relating to the motion of non-interacting particles are 
remarkably similar to quantum mechanical ones; it seems that any attempt to refor- 
mulate physics within this framework might start with classical physics, and might 
reproduce quantum theory, with hopefully some experimentally observable 
differences. The one unsatisfactory feature of the derivation of the uncertainty 
principle is the ambiguity relating to the mass m of particle B. Equation (8) suggests a 
resolution of this ambiguity, which however involves taking seriously the chronon 
impact picture of time. If we regard the discrete elements of time as actual intervals 
between chronon impacts, we must specify a chronon register to be used in for 
example radar observations of particle motion. Clearly a macroscopic clock will 
experience many more such impacts in a given interval than say an electron, in direct 
proportion to the number of particles in the clock, i.e. its rest mass. If we adopt the 
notion that when observing the motion of say electrons, then electrons are to be 
regarded as chronon impact registers, the resolution suggested by equation (8) is that 
the number of such impacts in a given interval is proportional to the rest mass of the 
particle in question, i.e. that the rest mass is proportional to the chronon collision 
cross section. The ratio m/n,  is thus constant, and equation (8) is now an unam- 
biguous statement. If this idea is correct, it implies that space-time continuity breaks 
down at different levels for different species of elementary particle. An immediate 
consequence of this idea is that zero rest mass particles do not register chronons at all, 
which is quite acceptable as such particles follow null paths. 

There is of course a danger that the chronon gas would define an absolute rest 
frame, in the way that a classical gas of atoms or photons would. However, there is a 
fundamental difference here, which might prevent this. A particle moving slowly 
relative to the rest frame defined by say a classical relativistic gas would experience 
fewer atomic collisions per second than one at rest in this frame; by definition, the 
number of chronon impacts per unit time is the same for all particles of one species, 
whatever their relative motion. In any case, the chronon gas is not to be taken as 
filling space in the classical fashion, but as ‘being’ space-time in some sense, along the 
lines of Penrose’s idea of a ‘no space-time’ model of space-time (Penrose 1967, 
unpublished). 

In conclusion, we note that this discussion has been restricted to one spatial 
dimension, and to the one-dimensional motion of non-interacting particles. Clearly 
generalisations are required to produce a fully workable model. A generalisation to 
three spatial dimensions would involve a discussion of angles and directions, which 
might enable a theory of angular momentum to be developed. Gravitation, within the 
framework of classical general relativity, would probably be the easiest interaction to 
consider in this context, as there has been extensive work (Ehlers et a1 1972, Castag- 
nino 1971) on the construction of curved space-time structure using light rays and free 
particles. 
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